Home | Legals | Data Protection | Sitemap | KIT

The PDIFF beamline is dedicated to diffraction experiments on bulk polycrystalline materials, with the emphasis on in-situ investigations. Additional experimental facilities enable high-resolution powder diffraction, residual stress and texture measurements. In specific cases the beamline is also suited to scattering studies on thin-films and epitaxial layers.

In-situ investigations deal with crystallographic structural changes (phase composition, lattice parameters) microstructure and nanostructure properties (grain size, texture, strain and stress) during thermal, mechanical or chemical processing of wide range of materials such as battery materials, catalysts, ceramics and alloys. Ex-situ crystallographic applications include the precise determination of lattice parameters, crystal structure and phase composition in polycrystalline phases such as pharmaceutics and minerals.

The experimental facilities consists two experimental stations - a large 3-circle powder diffractometer which is equipped with detectors for rapid data-acquisition and can carry heavy loads such as customised sample-conditioning equipment. A smaller 4-circle diffractometer with a high-resolution anaylser is available for experiments requiring additional degrees of freedom for the sample (but with limited facilities for sample conditioning.)




1 additional person visible within KIT only.


The experimental facility comprises two experimental stations:


  1. a heavy-duty 3-circle powder diffractometer capable of carrying sample loads up to approx. 60kg together with multiple detector systems for real-time investigation of structural changes in polycrystalline materials. Experiments can be carried out on small sample quantities (a few milligrams) in either transmission or reflection geometries. The diffractometer is equipped with 2 main detectors: a large CCD camera and a 90° 1D detector for simultaneous registration of x-ray scattering over a large angular range.
  2. a 4-circle Kappa diffractometer for experiments requiring additional orientational degrees of freedom, for example for texture and stress analyses in thin films. This diffractometer can carry up to approx. 5 kg loads and is equipped with either analyser or Soller collimator optics for high angular resolution studies. While the instrument is normally equipped with detectors optimised for angular and energy resolution it can also be equipped with CCD or 1D linear detectors.


Various diffraction geometries can be accommodated: symmetric and asymmetric reflection and transmission, both with and without continuous sample rotation. Typical time resolution for in-situ studies depends both upon the sample and the detector setup, but can be down to the order of 0.5 second for powder patterns recorded with either 1D or 2D detectors. Typical measurement times for high-resolution powder scans are between 2 and 6 hours depending on the sample scattering power. Spatial resolution (at the sample) is of the order of 100µm.

Various diffraction geometries can be accommodated: symmetric and asymmetric reflection and transmission, both with and without continuous sample rotation. Typical time resolution for in-situ studies depends both upon the sample and the detector setup, but can be down to the order of 0.5 second for powder patterns recorded with either 1D or 2D detectors. Typical measurement times for high-resolution powder scans are between 2 and 6 hours depending on the sample scattering power. Spatial resolution (at the sample) is of the order of 100µm.



Diffractometer Schema The heavy-duty powder diffractometer is equipped with 3 concentric axes: two of these carry various detector combinations while the third can carry a sample load of up to ≈ 60kg. The detector circles are independent so that diffraction data can be collected simultaneously by more than one detector system.

The heavy-duty powder instrument is based on 3 concentric rotation axes:

  • Detector circle 1 carries a Princeton CCD detector.
  • Detector circle 2 carries a 90° curved PSD (Inel CPS590)
  • The sample circle allows masses of up to 80kg to be mounted

An XYZ-stage for sample mounting and adjustment is available as is a multi-sample changer for powders (flat-plate, reflection). A small Eulerian cradle is planned to be instlled in 2014.

Kappa Diffractometer

The Kappa-diffractometer provides traditional 4-circle geometry for experiments requiring additonal degrees of orientational freedom.

The instrument is equipped with a single analyser channel (Ge111-crystal) and NaI scintillation detector. It is also possible to equip the diffractometer with both the CCD camera and the 90°PSD.

Due to construction and space limitations the sample stage can carry a maximum of 10kg load and is therefore unsuitable for heavier sample-specific instrumentation.


A selection of detectors suited to various polycrystalline diffraction experiments is available. Depending on parameters such as angular and energy resolution, data-acquisition speed and sample form and quantity the best type of detector can be matched to the experiment. At present the following detectors are available for both instruments:

  • Princeton 165mm diameter 2D-CCD detector
  • INEL 90° linear PSD
  • Vantec-1 PSD
  • NaI point detectors (from mid-2009 a 3-axis multi-analyser stage will be available for simultaneous registration of high-resolution data)

Sample conditioning & manipulation

A variety of sample holders are available for ambient temperature transmission & reflection measurements. Additionally a furnace to ≈1200°C and an LN2-cryostat to ≈80K are available for reflection samples. A capillary furnace and a tensile extension/compression stage will be available from May 2009.

KapillareMRI LN2 Mikrochamberflat plateMRI


A full range of general purpose XRD routines for powder data analysis, cell refinement, phase analysis and structure refinement (eg. Fullprof & Topas) are available. On-line databanks available at the beamline include the ICSD, PDF and CSD.


The beamline optic delivers focused monochromatic radiation to two experimental stations – a heavy duty 3-axis powder diffractometer and a 4-circle Kappa-goniostat. The experimental stations are accessible in an either/or mode. The re-configuration of the beamline when switching between stations is around 1-2 hours depending on the beam parameters required and the complexity of the detector setup.

1.5T bending magnet (Ec = 6keV)


  1. horizontally & vertically focusing mirror system (cut-off energy 21keV)
  2. Si111 double crystal monochromator (water-cooled 1st crystal)

Energy range & resolution (ΔE/E)
6-21keV, ≈2x10-4 at 10keV

Flux at sample position
≈2x1010 ph/s/mm2 at 10keV, based on 100mA beam current and 0.1% bandwidth

Beam size at sample
≈0.5mm (H) x .5mm (V) (focused), ≈0.5mm (H) x 1mm (V) collimating (fwhm).
The vertical focus point can be optimised for either the 1st or the 2nd experiment based on the bending radius of the mirror. The horizontal focus is optimised for the 1st experimental station



Title Author Source Date Link

A. Grzechnik, N. Khaidukov, K. Friese 

Dalton Transact. 42, 441-447 

2013 PDF

A. Slobodskyy, T. Slobodskyy, T. Ulyanenkova, S. Doyle, M. Powalla, T. Baumbach, U. Lemmer 

Applied Physics Letters 97 (2010) 251911-1-3 


A. Weisenburger, A. Jianu, S. Doyle, M. Bruns, R. Fetzer, A. Heinzel, M. DelGiacco, W. An, G. Müller 

J. Nucl. Mat. 437, 282-292 

2013 PDF

B. Bittova, J. Poltierova Vejpravova, M. Kalbac, S. Burianova, A. Mantlikova, S. Danis, S. Doyle 

Journal of Physical Chemistry C 115 (2011) 17303-17309 


B. Krause, S. Darma, M. Kaufholz, S. Mangold, S. Doyle, S. Ulrich, H. Leiste, M. Stüber, T. Baumbach 

J. Appl. Cryst. 46, 1064-1075 

2013 PDF

C. Ferrari, F. Germini, D. Korytár, P. Mikulík, L. Peverini 

Journal of Applied Crystallography 44 (2011) 353-358 


D. G. MacDonald, A. Eichhöfer, Ch. F. Campana, J. F. Corrigan 

Chemistry - A European Journal 17 (2011) 5890-5902 


G. Buth, E. Huttel, S. Mangold, R. Steininger, D. Batchelor, S. Doyle, R. Simon 

J. Phys.: Conf. Ser. 425, 042004 

2013 PDF

G.L.Chiarello, M.V. Dozzi, M. Scavini, J.-D. Grunwaldt, E. Selli

Appl. Catal. B 160-161,144-151



J. Altenkirch, J. Gibmeier, V. Kostov, A. Kromm, T. Kannengiesser, S. Doyle, A. Wanner 

Journal of Strain Analysis for Engineering Design 46 (2011) 563-579 


J. Majzlan, H. Schlicht, M. Wierzbicka-Wieczorek, G. Giester, H. Pöllmann, B. Brömme, S. Doyle, G. Buth, C. Bender Koch 

Miner. Petrol. 107, 221-233 

2013 PDF

J. Majzlan, P. Glasnák, R. A. Fisher, M. White, M. B. Johnson, B. Woodfield, J. Boerio-Goates 

Physics and Chemistry of Minerals 37 (2010) 635-651 


J. Poltierová Vejpravová, J. Prokleska, V. Valeš, S. Danis, A. Mantlikova, V. Holy, P. Brazda, S. Doyle, C. Ritter, H. Kitazawa, D. Niznansky 

IOP Conference Series: Materials Science and Engineering 18 (2011) 022010-1-4 


J. Rebelo Kornmeier, J. Gibmeier, M. Hofmann 

Measurement Science and Technology 22 (2011) 065705-1-9 


J. Sejkora, J. Plasil, J. Filip 

Journal of Geosciences 56 (2011) 215-229 


K. C. Sekhar, S. Levichev, K. Kamakshi, S. Doyle, A. Chahboun, M. J. M. Gomes 

Materials Letters 98, 149-152 

2013 PDF

L. Hartmann, D. Djurado, I. Florea, J-F. Legrand, A. Fiore, P. Reiss, S. Doyle, A. Vorobiev, S. Pouget, F. Chandezon, O. Ersen, M. Brinkmann 

Macromolecules 46, 6177-6186 

2013 PDF

L. Roiban, L. Hartmann, A. Fiore, D. Djurado, F. Chandezon, P. Reiss, J.-F. Legrand, S. Doyle, M. Brinkmann, O. Ersen 

Nanoscale 4 (2012) 7212-7220 

2012 PDF

M. Herrmann, P. B. Kempa, U. Förter-Barth, S. Doyle 

Zeitschrift für Kristallographie Proceedings 1 (2011) 99-104 


M. Krispin, A. Ullrich, S. Horn 

Journal of Nanoparticle Research 14 (2012) 669-1-11 

2012 PDF

M. Schroeder, S. Glatthaar, H. Geßwein, V. Winkler, M. Bruns, T. Scherer, V. Sai Kiran Chakravadhanula, J. R. Binder 

J. Mater. Sci. 48, 3404-3414 

2013 PDF

O. V. Krysina, N. N. Koval, Yu. F. Ivanov, N. A. Timchenko, T. Baumbach, S. Doyle, T. Slobodskyy 

Journal of Physics: Conference Series 370 (2012) 012021-1-6 

2012 PDF

P. J. Bereciartua, F. J. Zuñiga, J. M. Perez-Mato, V. Petříček, E. Vila, A. Castro, J. Rodríguez-Carvajal, S. Doyle 

Aperiodic Crystals, 149-155 

2013 PDF

P. J. Bereciartua, F. J. Zuniga, J. M. Perez-Mato, V. Petricek, E. Vila, A. Castro, J. Rodriguez-Carvajal, S. Doyle 

Acta Crystallographica Section B - Structural Science 68 (2012) 323-340 

2012 PDF

P. Seredin, V. Kashkarov, A. Lukin, Y. Ippolitov, R. Julian S. Doyle 

J. Synchrotron Rad. 20, 705-710 

2013 PDF

R. Chen, M.l Knapp, M. Yavuz, R. Heinzmann, D. Wang, S. Ren, V. Trouillet, S. Lebedkin, S. Doyle, H. Hahn, H. Ehrenberg, S. Indris

J. Phys. Chem. C 118 24, 12608-12616



R. M. Bolanz, J. Majzlan, L. Jurkovic, J. Göttlicher 

Fuel 94 (2012) 125-136 

2012 PDF

S. R. Yeduru, A. Backen, S. Fähler, L. Schultz, M. Kohl 

J. Alloys Comp. 577S, S353-S357 

2013 PDF

V. Tyrpekl, J. Poltierová Vejpravová, A. G. Roca, N. Murafa, L. Szatmary, D. Niznansky 

Applied Surface Science 257 (2011) 4844-4848 


V. Valeš, J. Poltierova-Vejpravova, V. Holý, V. Tyrpekl, P. Brázda, S. Doyle 

Physica Status Solidi C - Current Topics in Solid State Physics 7 (2010) 1399-1404 


W. Bensch, J. Ophey, H. Hain, H. Gesswein, D. Chen, R. Mönig, P. A. Grüber, S. Indris 

Physical Chemistry Chemical Physics 14 (2012) 7509-7516 

2012 PDF

Yu. F. Ivanov, N. N. Koval, O. V. Krysina, T. Baumbach, S. Doyle, T. Slobodskyy, N. A. Timchenko, R. M. Galimov, A. N. Shmakov 

Surface & Coatings Technology 207 (2012) 430-434 

2012 PDF