Home | Legals | Sitemap | KIT

Overview

UHV
UHV cluster comprising several deposition and surface analysis chambers.

The ANKA UHV (ultra-high vacuum) Analysis lab is a facility for in-situ growth studies combining a modular and extendable UHV cluster system for complementary surface analytics with several UHV growth chambers for in situ X-ray experiments during thin film and nanostructure formation.
Being situated in close proximity to the ANKA beamlines and to a dedicated chemistry lab for sample preparation, the UHV Analysis lab allows for studying various nanosystems, optimizing the use of the beamlines, and ensures a fast feedback between complementary measurements and X-ray experiments.

The UHV cluster is a large ultra-high vacuum transfer system offering several docking stations for portable and stationary growth chambers. Samples with a maximum size of 25 mm can be inserted directly via three loadlocks. The central analysis and surface preparation chambers are accessible from all growth chambers. Here, samples can be prepared by Argon sputtering (limited to a surface area of 10x10 mm2) and annealing. They can be analyzed by standard surface characterization methods such as:

  • reflection high energy electron diffraction (RHEED),
  • low-energy electron diffraction (LEED),
  • Auger electron spectroscopy (AES),
  • X-ray photoelectron spectroscopy (XPS),
  • UHV atomic force microscopy (AFM),
  • UHV scanning tunneling microscopy (STM).


The UHV cluster is extendable and develops according to the demands of future experiments.

Usage hint:

Clusterschema

 

LoadlockLOADLOCK

Es gibt 3 Schleusen, über die Proben in den UHV Cluster gelangen können. Die zwei Schleusen im zentralen Transfersystem sind mit Heizungen ausgestattet, um Wasser zu desorbieren.


Samples can be introduced into the UHV Cluster via 3 loadlocks. The 2 loadlocks in the main transfer system are equiped with heaters for the desorption of water.

Docking StationDOCKING STATION

Portable UHV Kammern wie z.B. Transportkoffer oder Beschichtungskammern für in situ Röntgenexperimente können an 3 Stationen angedockt werden.


Portable UHV chambers such as growth chambers for in situ X-ray experiments and transport cases can be attached to the UHV cluster at 3 docking stations.

Sputter ChamberSPUTTER CHAMBER

Portable UHV Kammer für in situ Röntgenmessungen während des DC und RF Magnetron-Sputterns.


Portable UHV chamber for in situ X-ray experiments during RF and DC magnetron sputter deposition.


More information:

Sputter Deposition
Projects

Docking StationDOCKING STATION

Portable UHV Kammern wie z.B. Transportkoffer oder Beschichtungskammern für in situ Röntgenexperimente können an 3 Stationen angedockt werden.


Portable UHV chambers such as growth chambers for in situ X-ray experiments and transport cases can be attached to the UHV cluster at 3 docking stations.

StorageSTORAGE CHAMBER

Proben können in einem Probenlager über längere Zeit unter UHV Bedingungen gelagert werden.


Samples can be stored for longer periods in a dedicated UHV storage chamber.

StorageSTORAGE CHAMBER

Proben können in einem Probenlager über längere Zeit unter UHV Bedingungen gelagert werden.


Samples can be stored for longer periods in a dedicated UHV storage chamber.

AFMSCANNING PROBE MICROSCOPY CHAMBER

Die Morphologie der Probe kann unter UHV Bedingungen mit Rastersondenmethoden (AFM, STM) untersucht werden.


The morphology of the samples can be studied with scanning probe methods (AFM, STM) under UHV conditions.


More information:

AFM / STM

LoadlockLOADLOCK

Es gibt 3 Schleusen, über die Proben in den UHV Cluster gelangen können. Die zwei Schleusen im zentralen Transfersystem sind mit Heizungen ausgestattet, um Wasser zu desorbieren.


Samples can be introduced into the UHV Cluster via 3 loadlocks. The 2 loadlocks in the main transfer system are equiped with heaters for the desorption of water.

SCCSURFACE CHARACTERIZATION CHAMBER

Zur Untersuchung der Kristallstruktur der Proben-oberfläche stehen LEED, RHEED und AES zur Verfügung.


The crystal structure of the surface can be studied with LEED, RHEED and AES.


More information:

RHEED / LEED / AES

XPSXPS CHAMBER

Untersuchung der chemischen Zusammensetzung und der chemischen Bindungen mittels Röntgenphotoelektronen-­spektroskopie.


X-ray photoelectron spectroscopy for the study of the chemical composition and the bonding.


More information:

XPS

RMBERMBE

UHV Kammer für die Molekularstahlepitaxie von Seltenen Erden, mit MOKE Kammer zur Untersuchung des Magnetismus.


UHV Chamber for the molecular beam epitaxy of rare earths, with MOKE characterization of the magnetism.


More information:

Molecular Beam Epitaxy / Projects

Docking StationDOCKING STATION

Portable UHV Kammern wie z.B. Transportkoffer oder Beschichtungskammern für in situ Röntgenexperimente können an 3 Stationen angedockt werden.


Portable UHV chambers such as growth chambers for in situ X-ray experiments and transport cases can be attached to the UHV cluster at 3 docking stations.

PMBEPMBE

Portable UHV Kammer für in situ Röntgenmessungen während der Deposition von III/V Halbleiternanostrukturen


Portable UHV chamber for in situ X-ray experiments during the deposition of III/V semiconductor nanostructures.


More information:

Molecular Beam Epitaxy / Projects

LoadlockLOADLOCK

Es gibt 3 Schleusen, über die Proben in den UHV Cluster gelangen können. Die zwei Schleusen im zentralen Transfersystem sind mit Heizungen ausgestattet, um Wasser zu desorbieren.


Samples can be introduced into the UHV Cluster via 3 loadlocks. The 2 loadlocks in the main transfer system are equiped with heaters for the desorption of water.

Methods at the UHV Analysis Lab

In the UHV analysis lab, samples can be analyzed by several standard surface characterization methods including spectroscopical methods (XPS and AES), diffraction methods (LEED and RHEED) and scanning microscopy (AFM and STM). Here, an overview over the methods is given. As an example, measurements of a gold single crystal are shown.

XPS - X-ray Photoelectron Spectroscopy

XPS

X-ray photoelectron spectroscopy gives information about the chemical composition of a sample within the topmost 2 nm. The sample is illuminated by soft X-rays. Photoelectrons are emitted, giving information about the binding energies of the atoms.

 

AES - Auger Electron Spectroscopy

AES

Auger electron spectroscopy is another method to get information about chemical composition. Auger electrons are emitted from atoms, giving information about binding energies. One application of the method is to check a sample for surface contaminations, e.g. after contact with air.

 

LEED - Low Energy Electron Diffraction

LEED

Low energy electron diffraction gives information about the atomic ordering of a material, by bombarding it with a beam of low energy electrons. The pattern of the structure, created by the diffracted electrons; is shown on a screen.

 

RHEED - Reflection High Energy Electron Diffraction

RHEED

Reflection high energy electron diffraction is another method to examine the crystalline structure of the surface. Streaks indicate a smooth surface.

 

AFM - Atomic Force Microscopy

AFM

An atomic force microscope is a high-resolution scanning microscope which gives information about the surface morphology of a material on the atomic scale. The measured signal is the bending of a cantilever which is related to the force between a tip and the sample.

 

STM - Scanning Tunnel Microscopy

STM

Another method for imaging surfaces is the scanning tunnel microscopy. The measured signal is a tunnel current between a tip and the sample.

 

Portable in situ MBE chamber

Portable chamber for in situ sputter deposition

 

Rare-earth MBE chamber

 

Real-time in situ X-ray investigations of dynamic processes during epitaxial growth and annealing of III-V semiconductor nanostructures (e.g. GaAsNW, InGaAsQD).

In situ X-ray experiments (XRD, XRR, EXAFS) during reactive and non-reactive sputter deposition of thin films.

Investigation of the interplay between the structure, morphology, magnetism and lattice dynamics in rare earth based epitaxial nanostructures.

Materials:
InGaAs  
Materials:
transition metal nitrides and carbides, metals, silicides          
Materials:
rare earth metals, silicides and oxides  

Special features:

RHEED

Special features:

modular chamber geometry, large angular range for XRD, RF and DC magnetron sputtering

Special features:

several high temperature evaporation sources, Tubo-e cell for oxides, in situ RHEED and MOKE measurements

Contact: Philipp Schroth

Research Project:

„III-V Semiconductor Nanostructures“

Contact: Bärbel Krause

Research Project: „Sputter deposition“

Contact: Svetoslav Stankov

Research Group: „Nanodynamics“

Reference UHV chamber:

Slobodskyy et al., Rev. Sci. Instr. 83 (2012), 105112-105117

Reference UHV chamber:

Krause et al., J. Synchr. Rad.19 (2012), 216-222

Reference UHV chamber:

S. Ibrahimkutty et al., J. Sync. Rad. 22 (2015) 1

 

more information...      

more information...       

more information...    

 

UHV-Chemistry Lab

The UHV- Chemistry Lab, which is directly connected to the UHV analysis laboratory, is optimized for the needs of thin film preparation such as sample surface preparation by etching, thin film deposition from solution, and cleaning of UHV components.
Laborzeile
Storage space and disposal containers
Storage and disposal containers
Ultrasonic bath
Ultrasonic bath
STM tip eatching device
STM tip eatching divice

The chemistry lab is equipped with two fume hoods (standard & for strong acids). Storage space and disposal containers for acids, bases, and solvents are available.
 

Typical tasks:

  • Cleaning samples, holder and UHV-components in the ultrasonic bath
  • Chemical cleaning and etching of samples and components
  • Preparation of AFM and STM tips
  • HF etching of Si Substrates

 

Contact:

Lab Responsible: Dr. Bärbel Krause
Chemical Technical Contact: Annette Weißhardt


Publications
Title Author Source Date Link

Philipp Schroth, Martin Köhl, Jean-Wolfgang Hornung, Emmanouil Dimakis, Claudio Somaschini, Lutz Geelhaar, Andreas Biermanns, Ullrich Pietsch, Sondes Bauer, Sergey Lazarev, and Tilo Baumbach

Phys. Rev. Lett. 114, 055504

2015

Marthe Kaufholz,  Bärbel Krause,  Sunil Kotapati,  Martin Köhl,  Miguel F.  Mantilla,  Michael  Stüber,  Sven Ulrich,  Reinhard Schneider,  Dagmar Gerthsen

Journal of Synchrotron Radiation 22, Part 1

2015

PDF
 

M. Köhl, P. Schroth, A. A. Minkevich, J.-W. Hornung, E. Dimakis, C. Somaschini, L. Geelhaar, T. Aschenbrenner, S. Lazarev, D. Grigoriev, U. Pietsch and T. Baumbach

Journal of Synchrotron Radiation 22, Part 1

2015

PDF

Shyjumon Ibrahimkutty, Anja Seiler, Tim Prüßmann, Tonya Vitova, Ramu Pradip, Olga Bauder, Peter Wochner, Anton Plech, Tilo Baumbach, and Svetoslav Stankov

Journal of Synchrotron Radiation 22, Part 1

2015

PDF

O. Bauder, A. Seiler, S. Ibrahimkutty, D.G. Merkel, B. Krause, R. Rüffer, T. Baumbach, S. Stankov

Journal of Crystal Growth 400, 61-66

2014

PDF

B. Krause, B. Miljevic, T. Aschenbrenner, E. Piskorska-Hommel, C. Tessarek, M. Barchuk, G. Buth, R. Donfeu Tchana, S. Figge, J. Gutowski, D. Hänschke, J. Kalden, T. Laurus, S. Lazarev, R. Magalhaes-Paniago, K. Sebald, A. Wolska, D. Hommel, J. Falta, V. Holý, T. Baumbach

Journal of Alloys and Compounds 585, 572-579

2014

PDF

A. Seiler, O. Bauder, S. Ibrahimkutty, R. Pradip, T. Prüßmann, T. Vitova, M. Fiederle, T. Baumbach, and S. Stankov

Journal of Crystal Growth 407, 74-77

2014

PDF

B. Krause, S. Darma, M. Kaufholz, S. Mangold, S. Doyle, S. Ulrich, H. Leiste, M. Stüber, T. Baumbach

Journal of Applied Crystallography 46, 1064-1075

2013

PDF

D. Saez de Jauregui, T. Baumbach, S. Casalbuoni, A. Grau, S. Gerstl, M. Hagelstein, C. Heske, T. Holubek, B. Krause, A. Seiler, S. Stankov, L. Weinhardt, C. Boffo, C. Antoine, Y. Boudigou

Conference proceedings of the IPAC12, 723-725

2012

PDF

B. Krause, S. Darma, M. Kaufholz, H. Gräfe, S. Ulrich, M. Mantilla, R. Weigel, S. Rembold, T. Baumbach

Journal of Synchrotron Radiation 19, 216-222

2012

PDF

T. Slobodskyy, P. Schroth, D. Grigoriev, A. A. Minkevich, D. Z. Hu, D. Schaadt, T. Baumbach

Review of Scientific Instruments 83 (2012) 105112-105117

2012

PDF

P. Schroth, T. Slobodskyy, D. Grigoriev, A. Minkevich, M. Riotte, S. Lazarev, E. Fohtung, D.Z. Hu, D.M. Schaadt, T. Baumbach

Materials Science and Engineering: B

2012

PDF

Helfrich, M., Schroth, P., Grigoriev, D., Lazarev, S., Felici, R., Slobodskyy, T., Baumbach, T. and Schaadt, D. M.

Phys. Status Solidi A 12/2012

2012

PDF



Bärbel Krause

Dr. Bärbel Krause

Head of UHV Analysis Lab and Research Project Sputtering Depostition
baerbel krauseCoi6∂kit edu


Dr. Bärbel Krause

Publications
Title Author Source Date Link

B. Krause, K. Theis-Bröhl 

Journal of Physics - Condensed Matter 12 (22), 4675-4686 

2000

B. Krause, A. C. Dürr, K. A. Ritley, F. Schreiber, H. Dosch, D. Smilgies 

Applied Surface Science 175, 332-336 

2001

K. A. Ritley, B. Krause, F. Schreiber, H. Dosch 

Review of Scientific Instruments 72 (2), 1453-1457 

2001

A. C. Dürr, F. Schreiber, M. Münch, N. Karl, B. Krause, V. Kruppa, H. Dosch 

Applied Physics Letters 81 (12), 2276-2278 

2002

B. Krause, A. C. Dürr, K. Ritley, F. Schreiber, H. Dosch, D. Smilgies 

Physical Review B 66 (23), 235404 

2002

B. Krause, A. C. Dürr, F. Schreiber, H. Dosch, O. H. Seeck 

Journal of Chemical Physics 119 (6), 3429-3435 

2003

B. Krause, F. Schreiber, H. Dosch, A. Pimpinelli, O. H. Seeck 

Europhysics Letters 65 (3), 372-378 

2004

B. Krause, A. C. Dürr, F. Schreiber, H. Dosch, O. H. Seeck 

Surface Science 572 (2-3), 385-395 

2004

E. Piskorska, V. Holy, M. Siebert, B. Krause B, T. H. Metzger. T. Schmidt, J. Falta, T. Yamaguchi, D. Hommel 

Physica Status Solidi C - Current Topics in Solid State Physics 3 (6), 1662–1666 

2005

O. Caha, P. Mikulik, J. Novak, V. Holy, S. C. Moss, A. Norman, A. Mascarenhas, J. L. Reno, B. Krause 

Physical Review B 72 (3), 035313 

2005

B. Krause, T. H. Metzger, A. Rastelli, R. Songmuang, S. Kiravittaya, O. G. Schmidt 

Physical Review B 72 (8), 085339 

2005

C. Reich, M. B. Hochrein, B. Krause, B. Nickel 

Review of Scientific Instruments 76 (9), 095103 

2005

P. Miskiewicz, M. Mas-Torrent, J. Jung, S. Kotarba, I. Glowacki, E. Gomar-Nadal, D. B. Amabilino, J. Veciana, B. Krause, D. Carbone, C. Rovira, J. Ulanski 

Chemistry of Materials 18 (20), 4724-4729 

2006

M. B. Hochrein, C. Reich, B. Krause, J. O. Rädler, B. Nickel 

Langmuir 22 (2), 538-545 

2006

L. Wang, A. Rastelli, S. Kiravittaya, R. Songmuang, O. G. Schmidt, B. Krause, T. H. Metzger 

Nanoscale Research Letters 1 (1), 74-78 

2006

B. Krause, C. Mocuta, T. H. Metzger, C. Deneke, O. G. Schmidt 

Physical Review Letters 96 (16), 165502 

2006

C. Reich, M. R. Horton, B. Krause, A. P. Gast, J. O. Rädler, B. Nickel 

Biophysical Journal 95 (2), 657-668 

2008

A. Malachias, C. Deneke, B. Krause, C. Mocuta, S. Kiravittaya, T. H. Metzger, O. G. Schmidt 

Physical Review B 79 (3), 035301 

2009

C. Mocuta, K. Mundboth, J. Stangl, B. Krause, A. Malachias, T. Scheller, T. Cornelius, R. Paniago, A. Diaz, M. Rodrigues, J. Chevrier,O. Dhez, T. H. Metzger, G. Bauer, A. Barbier,A. V. Ramos, M. J. Guittet, J. B. Moussy, S. Stanescu, R. Mattana,C. Deranlot, F. Petroff 

Revue de Métallurgie 107 (10-11), 433-439 

2010

M. Barchuk, V. Holý, B. Miljević, B. Krause, T. Baumbach, J. Hertkorn, F. Scholz 

Journal of Applied Physics 108 (4), 043521 

2010

M. Barchuk, V. Holý, B. Miljević, B. Krause, T. Baumbach 

Applied Physics Letters 98 (2), 021912-1-3 

2011 PDF

D. Saez de Jauregui, T. Baumbach, S. Casalbuoni, A. Grau, S. Gerstl, M. Hagelstein, C. Heske, T. Holubek, B. Krause, A. Seiler, S. Stankov, L. Weinhardt, C. Boffo, C. Antoine, Y. Boudigou 

Conference proceedings of the IPAC12, 723-725 

2012 PDF

T. Marszalek, A. Nosal, R. Pfattner, J. Jung, J, S. Kotarba, M. Mas-Torrent, B. Krause, J. Veciana, M. Gazicki-Lipman, C. Crickert, G. Schmidt, C. Rovira, J. Ulanski 

Organic Electronics 13 (1) 121-128 

2012 PDF

B. Krause, S. Darma, M. Kaufholz, H. Gräfe, S. Ulrich, M. Mantilla, R. Weigel, S. Rembold, T. Baumbach 

Journal of Synchrotron Radiation 19, 216-222 

2012 PDF

B. Krause, S. Darma, M. Kaufholz, S. Mangold, S. Doyle, S. Ulrich, H. Leiste, M. Stüber, T. Baumbach 

Journal of Applied Crystallography 46, 1064-1075 

2013 PDF

B. Krause, B. Miljevic, T. Aschenbrenner, E. Piskorska-Hommel, C. Tessarek, M. Barchuk, G. Buth, R. Donfeu Tchana, S. Figge, J. Gutowski, D. Hänschke, J. Kalden, T. Laurus, S. Lazarev, R. Magalhaes-Paniago, K. Sebald, A. Wolska, D. Hommel, J. Falta, V. Holý, T. Baumbach 

Journal of Alloys and Compounds 585, 572-579 

2014 PDF
O. Bauder, A. Seiler, S. Ibrahimkutty, D.G. Merkel, B. Krause, R. Rüffer, T. Baumbach, S. Stankov Journal of Crystal Growth 400, 61-66 2014

PDF

A. Cecilia, V. Jary, M. Nikl, E. Mihokova, D. Hänschke, E. Hamann, P.-A. Douissard, A. Rack, T. Martin, B. Krause,T. Baumbach, M. Fiederle 

Radiation Measurements 62, 28–34 2014 PDF

M. Kaufholz, B. Krause, S. Kotapati, M. Köhl, M.F. Mantilla, M. Stüber, S. Ulrich, R. Schneider, D. Gerthsen and T. Baumbach

J. Synchrotron Rad. (2015). 22, 76–85

2015

B. Krause, M. Kaufholz, S. Kotapati, R. Schneider, E.Müller, D. Gerthsen, P.Wochner, T. Baumbach

Surface & Coatings Technology 277 (2015) 52–57

2015

A. Seiler, S. Ibrahimkutty, P. Wochner, R. Pradip, O Waller, B. Krause, A. Plech, T. Baumbach, M. Fiederle, S. Stankov

J. Phys. Chem. C 2016, 120, 7365−7372

2016