Home | Legals | Sitemap | KIT



The INE-Beamline at ANKA is dedicated to actinide research with X-ray spectroscopic techniques. It is operated by the Institute for Nuclear Waste Disposal (INE).


INE Fig1 Immobilisation

Schematic sketch visualizing some of the actinide mobilization / retention processes possibly following actinide release from corroded HAW.

Research and development at INE are largely aimed at long term safety assessment of proposed deep geological repositories for high-level, heat producing nuclear waste (HAW) disposal. To ensure sound safety assessment, a molecular understanding of processes determinant in the fate of radionuclides, notably the actinides, and thermodynamic quantification is essential. Of central importance in such investigations is determination of actinide speciation (i.e., their chemical and physical form). X-ray spectroscopic methods have proved to be valuable tools for actinide speciation research. Investigations on non-fissile radioisotopes up to 106 times the legal exemption limit and fissile radioisotopes (Pu-239, U-235) up to 200mg, contained within two layers of protection, are possible.

The synchrotron-based activities at the INE-Beamline are embedded in INE’s in-house research, thereby allowing a combination of analytical and instrumental methods, notably laser techniques and microscopic methods.


In situ X-ray spectroscopic investigations on radioactive samples are routinely performed at the INE-Beamline for studying, e.g., actinide containing solid-water interface chemical reactions, not possible at other facilities. A special protocol for working with radioactive samples at the INE-Beamline exists and is supervised by INE’s own radiation protection officers. The unique aspect of the INE-Beamline is its close proximity to INE’s active laboratories on-site KIT north campus. The design is for a multi-purpose beamline, where a number of methods are possible on one and the same sample.


The INE-Beamline serves three general functional areas:

  • Research = user facility (INE in-house, HGF NUSAFE program, via strategic research cooperation with KIT-INE)
  • Education and dissemination (maintaining nuclear competence)
  • Development & upgrades (adaption of methods, serving user needs)






                  INE Fig2 BL schema
                                   INE-Beamline – layout of optics and experimental stage.

Lemonnier-type double crystal X-ray monochromator (DCM) developed in cooperation with the Universität Bonn (Physikalisches Institut).

Compact design and pressure inside the DCM vacuum housing of ~10-6 mbar allowing fast crystal changes without long pumping times. Quick scanning mode available.




Detector Type Main specs

5 element LEGe (Canberra-Eurisys)


Vortex-60EX SDD (SIINT)

140 eV at 6 keV; 50 mm2 active area/element; 25 µm Be window

130 eV at 6 keV; 50 mm2 active area; 25 µm Be window


3 ionization chambers (Poikat / Hamburg

low-energy set-up with single entrance window (Oken Ltd. ionization chambers, Japan)

window 12.5 or 25 µm KAPTON, FEMTO low current amplifiers DLPCA-200

ionization chambers and sample chamber form windowless volume – gas tight insertion of SDD into sample chamber for high quality fluorescence spectra

Sample holder (HUBER goniometer):


Movement Range
z stage 40 mm; 40 nm/step
phi circle 360°; 0.0001°/step
psi cradle 30°; 0.0001°/step
theta cradle 30°; 0.0001°/step

                    INE Fig4 microfocus
                   Setup for confocal measurements with a µ-focused beam at the INE-Beamline.



Sample environment


Standard holder for transmission and fluorescence measurements of radioactive and non-radioactive samples, e.g., 400 µl and 2 ml PE-tubes, pellets.

Special sample chambers for grazing incidence measurements of flat samples (up to 3 inch diameter)

Liquid sample cell for the investigation of redox labile systems under electrochemically controlled conditions

High T / pressure cell setup

Environment: atmosphere, inert gas (existing supplies: He, N2, Ar)

Liquid N2 cryostat (OI OptistatDN) for low temperature measurements

                      INE - High T /P cell

                                                  High T / pressure cell for liquid samples.


Available methods



XAFS characterization of bulk species by XANES/EXAFS
XAFS/XRD characterization of phase - pair distribution relationships
XRF measure elemental concentrations
Surface sensitive with grazing incidence (GI) techniques
GI-XAFS characterization of surface sorbed species
X-ray reflectivity determination of surface layer thickness and roughness
X-ray standing waves characterization of surface sorbed and incorporated species
Spatial resolution with focused beam for ‘micro’ or µ-techniques
µ-XAFS chemical state imaging
µ-XRF elemental mapping
µ-XRD identification and distribution mapping of phases
High energy resolution (Johann spectrometer) HRXES: high resolution X-ray emission spectroscopy
RIXS:    resonant inelastic X-ray scattering
Combination of methods combined X-ray methods or X-ray method combined with other techniques, e.g., laser, Raman or UV/VIS spectroscopy


Radioactive work Infrastructure and licensing for activities 106 times the legal exemption limit as well as Pu-239 and U-235 up to 200mg.
Energy range 2.1 keV - 25 keV (P to Pd K-edge, actinides up to Cf L3 edge)
Source 1.5 T Bending magnet (Ec=6keV)
Optics • Double crystal monochromator, water-cooled first crystal, mechanically coupled movement of the second crystal to ensure fixed exit, D-MOSTAB, exchangeable crystal pairs InSb(111), Si(111), Si(311), Ge(422)
• Rh coated silicon mirrors (1st mirror vertical collimating, 2nd mirror vert. and horiz. focusing)
• SESO X-ray beam position monitor
• Optical microscope for sample positioning
• Set of polycapillary half lenses (IfG) for confocal detection of sample fluorescence yield at ~25 µm spatial (3D) resolution
• Single bounce capillary lens (IfG) with long focal distance for diffraction measurements at ~35 µm lateral resolution
Beam size at sample position

~500µm × 500µm (standard beam size)

~25µm with secondary focusing optic

Flux at sample position ~2×1010 photons/s at Zr K-/Pu L3-edges using Ge(422)
Experimental set-up/ sample positioning

• Standard sample holders for radioactive samples, other dimensions can be accommodated
• High precision HUBER sample positioning system, goniometer cradles, and motorized auxiliary slits for both standard XAFS and surface sensitive GI techniques
• Hexapod (PI) for positioning of secondary focusing optics
• Heavy load hexapod (PI) for precise positioning of Johann spectrometer or other heavy equipment
• Liquid N2 cryostat (OI OptistatDN) for low temperature measurements
• 1.2 × 3 m2 breadboard optical table
• Sealed media feed-through chicanes and separate ventilation / filter system for experimental hutch
• Access through lock-room with hand / foot-contamination monitor

Experimental set-up/ detectors • Ionization chambers for nominally high energies (transmission mode)
• Ionization chambers for nominally low energies (Oken Ltd, Japan)
• Setup for total electron yield (TEY) measurements
• XRD-setup using image plates (autoradiography films)
• PIN diode to measure photon flux at sample position
• 5 pixel high purity germanium solid state fluorescence detector (Canberra Ultra-LEGe)
• Silicon drift detector (Vortex-60EX, SII NanoTechnology)
• Fully digital fluorescence detector read-out (XIA)
Title Author Source Date Link

J. Majzlan, J.Plášil, R. Škoda, J. Gescher, F. Kögler, A. Rusznyak, K. Küsel, T.R. Neu, S. Mangold, J. Rothe

Environ. Sci. Technol. 48, 13685-13693



A. H. Pohl, A. A. Guda, V. V. Shapovalov, R. Witte, B. Das, F. Scheiba, J. Rothe, A. V. Soldatov, M. Fichtner Acta Materialia 68, 179–188 2014


A. Walshe, T. Prüßmann, T. Vitova, and Robert J. Baker 

Dalton Transact. DOI:10.1039/c3dt52437j 

2014 PDF

U. Carvajal Nuñez, R. Eloirdi, D. Prieur, L. Martel, E. López Honorato, I. Farnan, T.Vitova, J. Somers 

J. Alloys Comp. 589, 234-239 

2014 PDF

C. Walther, M. A. Denecke 

Chem. Rev. 113, 995-1015 

2013 PDF

T. Vitova, M. A. Denecke, J. Göttlicher, K. Jorissen, J. J. Kas, K. Kvashnina, T. Prüßmann, J. J. Rehr, J. Rothe 

J. Phys.: Conf. Ser. 430, 012117 

2013 PDF

J. Rothe, B. Brendebach, C. Bube, K. Dardenne, M. A. Denecke, B. Kienzler, V. Metz, T. Prüßmann, K. Rickers-Appel, D. Schild, E. Soballa, T. Vitova 

J. Phys.: Conf. Ser. 430, 012114 

2013 PDF

T. Prüßmann, M. A. Denecke, A. Geist, J. Rothe, P. Lindqvist-Reis, M. Löble, F. Breher, D. R. Batchelor, C. Apostolidis, O. Walter, W. Caliebe, K. Kvashnina, K .Jorissen, J. J. Kas, J. J. Rehr, T. Vitova 

J. Phys.: Conf. Ser. 430, 012115 

2013 PDF

D. Prieur, U. Carvajal-Nunez, T. Vitova, J. Somers 

Eur. J. Inorg. Chem. 2013, 1518-1524 

2013 PDF

D. Prieur, P. Martin, F. Lebreton, T. Delahaye, D. Banerjee, A. C. Scheinost, A. Jankowiak 

J. Nucl. Mat. 434, 7-16 

2013 PDF

I. Pidchenko, S. Salminen-Paatero, J. Rothe, J. Suksi 

J. Environm. Radioactivity 124, 141-146 

2013 PDF

M. W. Löble, P. Oña-Burgos, I. Fernández, C. Apostolidis, A. Morgenstern, O. Walter, F. Bruchertseifer, P. Kaden, T. Vitova, J. Rothe, K. Dardenne, N. L. Banik, A. Geist, M. A. Denecke, F. Breher 

Chem. Sci. 4, 3717-3724 

2013 PDF

P. Lindqvist-Reis, C. Apostolidis, O. Walter, R. Marsac, N. L. Banik, M. Y. Skripkin, J. Rothe, A. Morgenstern 

Dalton Transact. 42, 15275-15279 

2013 PDF
K. Holliday, K. Dardenne, C. Walther, T. Stumpf Radiochimica Acta 101, 267-272 2013 PDF

B. Fulda, A. Voegelin, K. Ehlert, R. Kretzschmar 

Geochimica et Cosmochimica Acta 123, 385-402 

2013 PDF

M. A. Denecke, T. Petersmann, R. Marsac, K. Dardenne, T. Vitova, T. Prüßmann, M. Borchert, U. Bösenberg, G. Falkenberg, G. Wellenreuther 

J. Phys.: Conf. Ser. 430, 012113 

2013 PDF

I. Denden, R. Essehli, M. Fattahi 

J. Radioanal. Nucl. Chem. 296, 149-155 

2013 PDF
H. Curtius,G. Kaiser, K. Rozov, A. Neumann, K. Dardenne, D. Bosbach Clays and Clay Minerals 61, 424-439 2013 PDF

U. Carvajal Nunez, L. Martel, D. Prieur, E. Lopez Honorato, R. Eloirdi, I. Farnan, T. Vitova, J. Somers 

Inorg. Chem. 52, 11669-11676 

2013 PDF

C. Bube, V. Metz, D. Schild, J. Rothe, K. Dardenne, M. Lagos, M. Plaschke, B. Kienzler 

Physics and Chemistry of the Earth, in press 

2013 PDF

G. L. Bovenkamp, A. Prange, W. Schumacher, K. Ham, A. P. Smith, J. Hormes 

Environ. Sci. Technol. 47, 4375-4382 

2013 PDF

O. N. Batuk, D. V. Szabó, M. A. Denecke, T. Vitova, S. N. Kalmykov 

Radiochim. Acta 101, 233-239 

2013 PDF

C. Walther, J. Rothe, B. Schimmelpfennig, M. Fuss 

Dalton Transactions 41 (2012) 10941-10947 

2012 PDF

M. Vespa, M. Rini, J. Spino, T. Vitova, J. Somers 

Journal of Nuclear Materials 421 (2012) 80-88 

2012 PDF

J. Rothe, S. Butorin, K. Dardenne, M. A. Denecke, B. Kienzler, M. Löble, V. Metz, A. Seibert, M. Steppert, T. Vitova, C. Walther, H. Geckeis 

Review of Scientific Instruments 83 (2012) 043105-1-13 

2012 PDF

A. Leon, J. Rothe, H. Hahn, H. Gleiter 

Revue de métallurgie: Cahiers d'informations techniques 109 (2012) 35-39 

2012 PDF

B. Kosog, H. S. La Pierre, M. A. Denecke, F. W. Heinemann, K. Meyer 

Inorganic Chemistry 51 (2012) 7940-7944 

2012 PDF

F. Huber, D. Schild, T. Vitova, J. Rothe, R. Kirsch, T. Schäfer 

Geochimica et Cosmochimica Acta 96 (2012) 154-173 

2012 PDF

J. Hu, A. Pohl, S. Wang, J. Rothe, M. Fichtner 

Journal of Physical Chemistry C 116 (2012) 20246-20253 

2012 PDF

K. Holliday, S. Handley-Sidhu, K. Dardenne, J. Renshaw, L. Macaskie, C. Walther, T. Stumpf 

Langmuir 28 (2012) 3845-3851 

2012 PDF

X. Gaona, J. Tits, K. Dardenne, X. Liu, J. Rothe, M. A. Denecke, E. Wieland, M. Altmaier 

Radiochimica Acta 100 (2012) 759-770 

2012 PDF
N. Finck, M. Bouby, K. Dardenne, H. Geckeis
Mineralogical Magazine 76(7) (2012) 2723–2740
2012 PDF

N. Finck, K. Dardenne, D. Bosbach, H. Geckeis 

Environmental Science & Technology 46 (2012) 10004-10011 

2012 PDF

A. Diener, R. Köppe 

Journal of Crystal Growth 349 (2012) 55-60 

2012 PDF

A. Diener, T. Neumann, U. Kramar, D. Schild 

Journal of Contaminant Hydrology 133 (2012) 30-39 

2012 PDF

U. Carvajal-Nunez, D. Prieur, T. Vitova, J. Somers 

Inorganic Chemistry 51 (2012) 11762-11768 

2012 PDF

A. Bremer, C. M. Ruff, D. Girnt, U. Müllich, J. Rothe, P. W. Roesky, P. J. Panak, A. Karpov, T. J. J. Müller, M. A. Denecke, A. Geist 

Inorganic Chemistry 51 (2012) 5199-5207 

2012 PDF

M. Walter, J. Somers, D. Bouëxière, J. Rothe 

Journal of Solid State Chemistry 184 (2011) 911-914 


E. Hartmann, B. Brendebach, R. Polly, H. Geckeis, T. Stumpf 

Journal of Colloid and Interface Science 353 (2011) 562-568 


U. E. Fittschen, G. Falkenberg 

Spectrochimica Acta Part B: Atomic Spectroscopy 66 (2011) 567-580 


R. Terzano, A. Santoro, M. Spagnuolo, B. Vekemans, L. Medici, K. Janssens, J. Goettlicher, M. A. Denecke, S. Mangold, P. Ruggiero 

Environmental pollution 158 (2010) 2702-2709 


T. Schäfer, M. A. Denecke 

AIP Conference Proceedings 1221 (2010) 181-187 


G. T. W. Law, A. Geissler, J. R. Lloyd, F. R. Livens, C. Boothman, J. D. C. Begg, M. A. Denecke, J. Rothe, K. Dardenne, I. T. Burke, J. M. Charnock, K. Morris 

Environmental Science & Technology 44 (2010) 8924-8929 


G. Kuri, C. Degueldre, J. Bertsch, M. Doebeli 

Nuclear Instruments and Methods in Physics Research B 268 (2010) 2177-2180 


B. Kienzler, V. Metz, B. Brendebach, N. Finck, M. Plaschke, Th. Rabung, J. Rothe, D. Schild 

Radiochimica Acta 98 (2010) 675-684 


S. Heathman, J.-P. Rueff, L. Simonelli, M. A. Denecke, J.-C. Griveau, R. Caciuffo, G. H. Lander 

Physical Review B 82 (2010) 201103-1-4 


D. Girnt, P. W. Roesky, A. Geist, C. M. Ruff, P. J. Panak, M. A. Denecke 

Inorganic Chemistry 49 (2010) 9627-9635 


N. L. Banik, B. Schimmelpfennig, C. M. Marquardt, B. Brendebach, A. Geist, M. A. Denecke 

Dalton Transactions 39 (2010) 5117-5122