Home | Legals | Sitemap | KIT

The beamline is best suited for the structural in-situ characterization of materials in reduced dimensions, like surfaces, interfaces, thin films, multilayers and nano-crystalline compound materials. In the future there will be an increased need to study such systems under industrially and environmentally relevant conditions, such as high temperature/pressure, external mechanical forces, aggressive gas atmospheres or high electric or magnetic fields and low temperatures.

Scientific applications

  • Structure of rare earth transition-metal oxide single crystals, thin films and multilayers
  • In-situ stress measurements and fault structures in metallic alloy thin films
  • In-situ reactive changes of the surface structure and morphology of intermetallic phases
  • In-situ growth of metallic alloy films
  • Oxidation of metallic alloys
  • In-situ studies of semiconductor nanostructures


Types of experiments that can be performed, are:

  • Crystal Truncation Rod measurements to study the atomic structure of surfaces and buried interfaces
  • Experiments under grazing incidence to obtain nm scale depth resolved structural and chemical information
  • Specular and off-specular reflectivity measurements providing the sample electron density profile normal to the surface and the surface and interface roughness profiles
  • Resonant scattering measurements to characterize collective electronic phenomena
  • In-situ diffraction experiments at high temperatures and under gas atmospheres using heavy sample environments
  • Time resolved experiments to study growth kinetics and interface evolution under controlled conditions.

Layout of the MPI beamline:
MPI Layout Beamline


Layout of the beamline optics:


Beamline Optics

Types of experiments that can be performed

  • Crystal Truncation rod measurements to study the atomic structure of surfaces and buried interfaces
  • Experiments under grazing incidence to obtain nm scale depth resolved structural and chemical information
  • Specular and off-specular reflectivity measurements providing the sample electron density profile normal to the surface and the surface and interface roughness profiles
  • Resonant scattering measurements to characterize collective electronic phenomena
  • In-situ diffraction experiments at high temperatures and under gas atmospheres using heavy sample environments
  • Time resolved experiments to study growth kinetics and interface evolution under controlled conditions.


The heart of the experimental end station is a 2+3 diffractometer that can be operated either in horizontal or vertical sample normal mode.
The sample stage has 4 degrees of freedom in the vertical configuration and 5 degrees of freedom in the horizontal configuration. The vertical axis sample rotation stage can support a weight up to 300 kg. The detector arm has in addition two degrees of freedom combined with the possibility of slit rotation on top of the detector arm. All rotations provide an agular resolution of 0.0002°. The detector arm itself is designed to support two detectors simultaneously. The whole instrument is aligned in the incident X-ray beam using a jackable table. Two motorized horizontal and vertical slits are mounted on the detector arm. In front of the instrument another pair of slits is defining the incident beam size. Behind the incident slits an ionization chamber is installed to monitor the incident photon flux.

An in-situ oxidation chamber, as it is mounted on the diffractometer; the growth of oxide islands can be monitored in situ by a 2D and a point detector simultaneously. In the experimental hutch a crane is installed that is used to handle heavier sample environments.

 

2+3 diffractometer in the experimental hutch In-situ oxidation chamber mounted on the diffractometer
2+3 diffractometer MPI diffractometer
The experimental stage can take up heavy duty sample environments for in situ experiments. A simultaneous detection using a 2D and a point detector is possible.

 

Instrument characteristics

The beamline can either be operated in monochromatic, pink or white beam mode. The key parameters of the beamline are summarized in the table at the end of this section. The main optical elements are a Rh coated Si mirror and the double crystal monochromator (DCM). The mirror allows to cut the energy spectrum of the incident photons at its higher end to suppress the harmonic content in the monochromatic beam. In addition it is used to focus the beam in the vertical direction. The DCM consists of a flat Si(111) single crystal and a sagital Si(111) crystal bender for horizontal focusing. The position of the incident X-ray beam is traced by a blade beam position monitor in front of the optics. The outgoing beam can be monitored by the insertion of a fluorescence screen at the end of the optics. Two pairs of horizontal and vertical slits allow to pre-select the beam size on the sample. 

Source
1.5 T Bending magnet (Ec = 6 keV), 0.3 mrad horizontal, 0.03 mrad vertical
Energy range

6 keV - 20 keV

 
Optics
Double crystal monochromator with a pair set of Si(111) crystals, second crystal allows horizontal focusing of the beam

Rh coated mirror, vertical focusing possible
Energy resolution (ΔE/E)
3·10-4 @ 9 keV
Flux at sample position
1.0 10+12 ph/s/s/ 0.1% bw @ 9 keV
Sample environment
UHV/HP chamber, HT oven, cryostat, tensile tester, fast capillary spinner
Beam size at sample
could be focused to 0,5mm (Hor) x 0,3mm (Ver)
 Experimental setup / sample positioning

1. station: Multiple circle diffractometer, horizontal / vertical sample normal geometry, horizontal / vertical four circle geometry, COR 5m from DCM

2. station: horizontal six circle diffractometer, COR 10 m from DCM

 Experimental setup / detectors

NaI(Tl) scintillation counter,
LaCl3 scintillation counter,
10x10mm² Avalanche photodiode,
2D gas filled wired detector,
MAR165 CCD 2D-detector,
Si/Ge energy dispersive detector,
Mythen 1D detector,
Pilatus 100k 2D detector

 Software: Control system / Data treatment / evaluation SPEC, software for reflectivity and crystal truncation rod analysis, software for reciprocal space mapping
Publications
Title Author Source Date Link

Y. Zhang, E. Barrena, X. Zhang, A. Turak, F. Maye, H. Dosch 

Journal of Physical Chemistry C 114 (2010) 13752-13758 

2010

A. Vlad, A. Stierle, M. Marsman, G. Kresse, I. Costina, H. Dosch, M. Schmid, P. Varga 

Physical Review B 81 (2010) 115402-1-10 

2010

M. Delheusy, J. Major, A. Rühm, A. Stierle 

International Journal of Materials Research 102 (2011) 

2011

A. Sykula-Zajac, E. Lodyga-Chruscinska, B. Palecz, R. E. Dinnebier, U. J. Griesser, V. Niederwanger 

Journal of Thermal Analysis and Calorimetry 105 (2011) 1031-1036 

2011

M. Sanyal, B. Schmidt-Hansberg, M. F. G. Klein, C. Munuera, A. Vorobiev, A. Colsmann, Ph. Scharfer, U. Lemmer, W. Schabel, H. Dosch, E. Barrena 

Macromolecules 44 (2011) 3795-3800 

2011

T. N. Krauss, E. Barrena, T. Lohmüller, J. P. Spatz, H. Dosch 

Physical Chemistry Chemical Physics 13 (2011) 5940-5944 

2011

M. K. Rasmussen, A. S. Foster, B. Hinnemann, F. F. Canova, S. Helveg, K. Meinander, N. M. Martin, J. Knudsen, A. Vlad, E. Lundgren, A. Stierle, F. Besenbacher 

Physical Review Letters 107 (2011) 036102-1-4 

2011

A. V. Boris, Y. Matiks, E. Benckiser, A. Frano, P. Popovich, V. Hinkov, P. Wochner, M. Castro-Colin, E. Detemple, V. K. Malik, C. Bernhard, T. Prokscha, A. Suter, Z. Salman, E. Morenzoni, G. Cristiani, H.-U. Habermeier, B. Keimer 

Science 332 (2011) 937-940 

2011

A. A. C. Bode, V. Vonk, F. J. van den Bruele, D. J. Kok, A. M. Kerkenaar, M. F. Mantilla, S. Jiang, J. A. M. Meijer, W. J. P. van Enckevort, E. Vlieg 

Crystal Growth & Design 12 (2012) 1919-1924 

2012 PDF

N. Kasper, P. Nolte, A. Stierle 

Journal of Physical Chemistry C 116 (2012) 21459-21464 

2012 PDF

B. Krause, S. Darma, M. Kaufholz, H. Gräfe, S. Ulrich, R. Mantilla, R. Weigel, S. Rembold, T. Baumbach 

Journal of Synchrotron Radiation 19 (2012) 216-222 

2012 PDF

V. Vonk, J. Huijben, D. Kukuruznyak, A. Stierle, H. Hilgenkamp, A. Brinkman, S. Harkema 

Physical Review B 85 (2012) 045401-1-5 

2012 PDF

A. Vlad, A. Stierle, R. Westerström, S. Blomberg, A. Mikkelsen, E. Lundgren 

Physical Review B 86 (2012) 035407-1-9 

2012 PDF

B. Schmidt-Hansberg, M. Sanyal, N. Grossiord, Y. Galagan, M. Baunach, M. F. G. Klein, A. Colsmann, P. Scharfer, U. Lemmer, H. Dosch, J. Michels, E. Barrena, W. Schabel 

Solar Energy Materials & Solar Cells 96 (2012) 195-201 

2012 PDF

A. Frano, E. Benckiser, Y. Lu, M. Wu, M. Castro-Colin, M. Reehuis, A. V. Boris, E. Detemple, W. Sigle, P. v. Aken, G. Cristiani, G. Logvenov, H.-U. Habermeier, P. Wochner, B. Keimer, V. Hinkov 

Advanced Materials 26, 258-262 

2013 PDF

J. Lohmiller, A. Kobler, R. Spolenak, P. A. Gruber 

Applied Physics Letters 102, 241916 

2013 PDF

U. Hejral, A. Vlad, P. Nolte, A. Stierle 

J. Phys. Chem. C 117, 19955-19966 

2013 PDF

D. Franz, S. Runte, C. Busse, S. Schumacher, T. Gerber, T. Michely, M. Mantilla, V. Kilic, J. Zegenhagen, A. Stierle 

Physical Review Letters 110, 065503 

2013 PDF

A. Pareek, G. N. Ankah, S. Cherevko, P. Ebbinghaus, K. J. J. Mayrhofer, A. Erbe, F. U. Renner 

RSC Advances 3, 6586–6595 

2013 PDF

S. J. B. Kurz, C. Ensslen, U. Welzel, A. Leineweber, E. J. Mittemeijer 

Scripta Mater. 69, 65-68 

2013 PDF

V. Vonk, N. Khorshidi, A. Stierle, H. Dosch 

Surface Science 612, 69-76 

2013 PDF

M. K. A. Koker, J. Schaab, N. Zotov, E. J. Mittemeijer 

Thin Solid Films 545, 71-80 

2013 PDF