Home | Legals | Sitemap | KIT

Growth and applications of III-V nanowires on Si substrates

Growth and applications of III-V nanowires on Si substrates
place:

 

new ANKA seminar room, building 348, 2nd floor
Affiliation:

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

Date:

15.09.2016

Inviting person:

Svetoslav Stankov, KIT - IPS

Speaker:

Emmanouil Dimakis

Time:

14:00

III-V semiconductor nanowires have been a subject of intense research over the last 10 years and a plethora of exciting nanoscale phenomena has been unveiled. The peculiar strain relaxation mechanisms in nanowire heterostructures offer the possibility to integrate epitaxially materials with large mismatch of lattice parameters and thermal expansion coefficients. Thus, one can tailor the (opto)electronic properties of nanowire heterostructures using an extended palette of materials compared to traditional thin-film heterostructures. Furthermore, the epitaxial growth of III-V nanowires on lattice mismatched Si substrates is of great interest, because the two complementary technologies can thus be integrated on single multifunctional chips combining the superior electronic and optoelectronic properties of the former with the mature CMOS technology of the latter.

This seminar will be focusing on III-As nanowires grown on Si(111) substrates by molecular beam epitaxy. Starting from the basic description of the vapor-liquid-solid growth of GaAs nanowires and the self-induced growth of InAs nanowires,1,2 the problem of structural polytypism and its effect on the nanowire optoelectronic and electrical properties will be discussed3,4 and, finally, the droplet-confined alternate pulsed epitaxy will be proposed as a unique growth mode that offers compatibility with the Si-CMOS processing standards.5 Finally, the growth and the structural properties of coaxial multishell (In,Al,Ga)As/GaAs nanowires will be presented, and their application in light emitting diodes or modulation doped heterostructures will be discussed.6

 

1 E. Dimakis, J. Lähnemann, U. Jahn, S. Breuer, M. Hilse, L. Geelhaar, and H. Riechert, Cryst. Growth Des. 2011, 11, 4001–4008

2 A. Biermanns, E. Dimakis, A. Davydok, T. Sasaki, L. Geelhaar, M. Takahasi, and U. Pietsch, Nano Lett. 2014, 14, 6878−6883

3 P. Schroth, M. Köhl, and J.-W. Hornung, E. Dimakis, C. Somaschini, L. Geelhaar, A. Biermanns, S. Bauer, S. Lazarev, U. Pietsch, T. Baumbach, Phys. Rev. Lett. 2015, 114, 055504

4 G. Bussone, H. Schäfer-Eberwein, E. Dimakis, A. Biermanns, D. Carbone, A. Tahraoui, L. Geelhaar, P. Haring Bolívar, T. U. Schülli, and U. Pietsch, Nano Lett. 2015, 15, 981−989

5 L. Balaghi, T. Tauchnitz, R. Hübner, L. Bischoff, H. Schneider, M. Helm, and E. Dimakis, Nano Lett. 2016, 16, 4032−4039

6 E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, and L. Geelhaar, Nano Lett. 2014, 14, 2604−2609